Physical-mechanical and functional properties of chitosan-based films incorporated with silver nanoparticles
Main Article Content
Abstract
Developing biodegradable, compatible, and non-toxic films based on chitosan that allows the incorporation of nanocomposites can be favorable for its application in various industries such as food industry. The objective was to develop films based on a chitosan biopolymer matrix added with silver nanoparticles (AgNPs) and evaluate their physical-mechanical, physicochemical, and microbiological properties for food packaging applications. AgNPs (by the Lee-Meisel method), and chitosan 1% (Q) solutions were synthesized, to evaluate the antimicrobial activity. Films of Q and Q-AgNPs were developed by the casting method and were evaluated by field emission scanning electron microscopy, color assessment, resistance to tension, elongation, elasticity, humidity, solubility, degree of swelling, permeability to water vapor, speed of transmission of water vapor and thickness. The combination of Q-AgNPs showed bacteriostatic effect, while AgNPs showed a delay in the onset of the logarithmic growth phase and decreased growth, compared to control. The Q and Q-AgNPs films were observed homogeneous without porosity. The color of the Q-AgNPs films was slightly more yellow and less luminous, which could confer protection from light. In the same sense, they were less permeable to water vapor which can give them a barrier function, offering a better protective effect for food, in addition, they were 9% more resistant to elongation, which makes them more malleable, under these conditions, it is concluded that Q-AgNPs films are feasible to be applied as coatings or packaging for food.
Downloads
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Azmy, E., Hashem, H., Mohamed, E., Negm, N. (2019). Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. Journal of Molecular Liquids, 284: 748-754. https://doi.org/10.1016/j.molliq.2019.04.054. DOI: https://doi.org/10.1016/j.molliq.2019.04.054
Chang, W., Liu, F., Rizwan, H., Huang, Z., Douglas, H., Zhong, F. (2019). Preparation of chitosan films by neutralization for improving their preservation effects on chilled meat. Food Hydrocolloids, 90: 50-61. https://doi.org/10.1016/j.foodhyd.2018.09.026. DOI: https://doi.org/10.1016/j.foodhyd.2018.09.026
Chen, X., Liu, X., Huang, K. (2019). Large-scale synthesis of size-controllable Ag nanoparticles by reducing silver halide colloids with different sizes. Chinese Chemical Letters, 30: 797-800. https://doi.org/10.1016/j.cclet.2018.11.011. DOI: https://doi.org/10.1016/j.cclet.2018.11.011
Deepak, K., Bilal, M., Shanooba, P., S. S. Lele. (2019). Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydrate Polymers, 211: 124-132. https://doi.org/10.1016/j.carbpol.2019.02.005.
Elmehbad, N. y Mohamed, N. (2020). Designing, preparation and evaluation of the antimicrobial activity of biomaterials based on chitosan modified with silver nanoparticles. International Journal of Biological Macromolecules, 151: 92-103.
https://doi.org/10.1016/j.ijbiomac.2020.01.298. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.298
Geueke, B., Groh, K., Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. Journal of Cleaner Production, 193: 491-505. https://doi.org/10.1016/j.jclepro.2018.05.005. DOI: https://doi.org/10.1016/j.jclepro.2018.05.005
Gu, B., Jiang, Q., Luo, B., Liu, C., Ren, J., Wang, X. y Wang, X. (2021). A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydrate Polymers, 260: 1-11, 117835. https://doi.org/10.1016/j.carbpol.2021.117835. DOI: https://doi.org/10.1016/j.carbpol.2021.117835
Haghighi, H., De Leo, R., Bedin, E., Pfeifer, F., Wilhelm, H., Pulvirenti, A. (2019). Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 19: 31-39. https://doi.org/10.1016/j.fpsl.2018.11.015. DOI: https://doi.org/10.1016/j.fpsl.2018.11.015
Hasim, S., Romero, M., Morris, M. (2016). The potential application of antimicrobial silver polyvinyl chloride nanocomposite films to extend the shelf-life of chicken breast fillets. Food Bioprocess Technol, 9: 1661-1673. https://doi.org/10.1007/s11947-016-1745-7. DOI: https://doi.org/10.1007/s11947-016-1745-7
Homez-Jara, A., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F. y Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. International Journal of Biological Macromolecules, 113: 1233-1240. https://doi.org/10.1016/j.ijbiomac.2018.03.057. DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.057
Jamaleddin P., Hadi, S., Pournasir, N., Mohammadzadeh P. (2019). Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packaging and Shelf Life, 22: 100420. https://doi.org/10.1016/j.fpsl.2019.100420. DOI: https://doi.org/10.1016/j.fpsl.2019.100420
Kadam, D., Momin, B., Palamthodi, S., Lele, S. (2019). Physicochemical and functional properties of chitosan-based nanocomposite films incorporated with biogenic silver nanoparticles. Carbohydrate Polymers, 211: 124-132. https://doi.org/10.1016/j.carbpol.2019.02.005. DOI: https://doi.org/10.1016/j.carbpol.2019.02.005
Kalaivani, R., Maruthupandy, M., Muneeswaran, T., Beevi, A. H., Anand, M., Ramakritinan, C. M. y Kumaraguru, A. K. (2018). Synthesis of chitosan mediated silver nanoparticles (AgNPs) for potential antimicrobial applications. Frontiers in Laboratory Medicine, 2(1): 30-35. https://doi.org/10.1016/j.flm.2018.04.002. DOI: https://doi.org/10.1016/j.flm.2018.04.002
Kalpana, S., Priyadarshini, S. R., Leena, Maria, Moses, J. A., Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93: 145-157. https://doi.org/10.1016/j.tifs.2019.09.008. DOI: https://doi.org/10.1016/j.tifs.2019.09.008
Khalil, N., El-Ghany, N., Rodríguez-Couto, S. (2019). Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere, 218: 477-486. https://doi.org/10.1016/j.chemosphere.2018.11.129. DOI: https://doi.org/10.1016/j.chemosphere.2018.11.129
Mathew, S., Snigdha, S., Mathew, J. y Radhakrishnan, E. (2019). Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packaging and Shelf Life, 19: 155-166. https://doi.org/10.1016/j.fpsl.2018.12.009. DOI: https://doi.org/10.1016/j.fpsl.2018.12.009
Mathew, S., Victório, C. P., Sidhi, J. y BH, B. T. (2020). Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) WT Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 13(12): 9139-9144. https://doi.org/10.1016/j.arabjc.2020.10.038. DOI: https://doi.org/10.1016/j.arabjc.2020.10.038
Mythili, R., Selvankumar, T., Kamala-Kannan, S., Sudhakar, C., Ameen, F., Al-Sabri, A. y Kim, H. (2018). Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Materials Letters, 225: 101-104. https://doi.org/10.1016/j.matlet.2018.04.111. DOI: https://doi.org/10.1016/j.matlet.2018.04.111
Ortega, F., Giannuzzi, L., Arce, V., García, M. (2017). Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids, 70: 152-162. https://doi.org/10.1016/j.foodhyd.2017.03.036. DOI: https://doi.org/10.1016/j.foodhyd.2017.03.036
Parthiban, E., Manivannan, N., Ramanibai, R., Mathivanan, N. (2018). Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnology Reports, 20: xx-xxx. https://doi.org/10.1016/j.btre.2018.e00297. DOI: https://doi.org/10.1016/j.btre.2018.e00297
Pawcenis, D., Chlebda, D., Jędrzejczyk, R., Leśniak, M., Sitarz, M., Łojewska, J. (2019). Preparation of silver nanoparticles using different fractions of TEMPOoxidized nanocellulose. European Polymer Journal, 116: 242-255. https://doi.org/10.1016/j.eurpolymj.2019.04.022. DOI: https://doi.org/10.1016/j.eurpolymj.2019.04.022
Qin, Y., Liu, Y., Yuan, L., Yong, H., Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96: 102-111. https://doi.org/10.1016/j.foodhyd.2019.05.017. DOI: https://doi.org/10.1016/j.foodhyd.2019.05.017
Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S. A. A. y Harish, R. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180: 264-267. https://doi.org/10.1016/j.matlet.2016.05.172. DOI: https://doi.org/10.1016/j.matlet.2016.05.172
Regiel, A., Irusta, S., Kyzioł, A., Arruebo, M., Santamaria, J. (2013). Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology, 24: 1-13. https://doi.org/10.1088/0957-4484/24/1/015101. DOI: https://doi.org/10.1088/0957-4484/24/1/015101
Roy, S., Shankar, S., Rhim, J. (2019). Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids, 88: 237-246. https://doi.org/10.1016/j.foodhyd.2018.10.013. DOI: https://doi.org/10.1016/j.foodhyd.2018.10.013
Salari, M., Khiabani, M., Mokarram, R., Ghanbarzadeh, B., Kafil, H. (2018). Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloids, 84: 414-423. https://doi.org/10.1016/j.foodhyd.2018.05.037. DOI: https://doi.org/10.1016/j.foodhyd.2018.05.037
Senthilkumar, P., Yaswant, G., Kavitha, S., Chandramohan, E., Kowsalya, G., Vijay, R. y Kumar, D. R. S. (2019). Preparation and haracterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. International Journal of Biological Macromolecules, 141: 290-298. https://doi.org/10.1016/j.ijbiomac.2019.08.234. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.234
Shah, A., Hussain, I. y Murtaza, G. (2018). Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity. International Journal of Biological Macromolecules, 116: 520-529. https://doi.org/10.1016/j.ijbiomac.2018.05.057. DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.057
Shankar, S., Wang, L., Rhim, J. (2016). Preparations and characterization of alginate/silver composite films: Effect of types of silver particles. Carbohydrate Polymers, 146: 208-216. http://dx.doi.org/10.1016/j.carbpol.2016.03.026. DOI: https://doi.org/10.1016/j.carbpol.2016.03.026
Souza, V., Fernando, A., Pires, J., Freitas P., López, A., Braz, F. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops & Products, 107: 565-572. http://dx.doi.org/10.1016/j.indcrop.2017.04.056. DOI: https://doi.org/10.1016/j.indcrop.2017.04.056
Wu, Z., Huang, X., Yi-Chen, Li, Xiao, H. y Wang, X. (2018). Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydrate Polymers, 199: 210-218. https://doi.org/10.1016/j.carbpol.2018.07.030. DOI: https://doi.org/10.1016/j.carbpol.2018.07.030
Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purplefleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90: 216-224. https://doi.org/10.1016/j.foodhyd.2018.12.015. DOI: https://doi.org/10.1016/j.foodhyd.2018.12.015
Zhang, W. y Weibo Jiang, W. (2020). Antioxidant and antibacterial chitosan film with tea polyphenols mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules, 155: 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.11.093. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.093