Graphene oxide nano coating on titanium prosthetic abutmente
Main Article Content
Abstract
To achieve greater survival of dental implants, a solid integration of the soft tissues in the transmucosal region with the prosthetic abutments is important. The objective of the study was to evaluate whether titanium abutment surfaces coated with graphene oxide improved cell adhesion. It has been shown that graphene oxide promotes the integration and stability of the cells that make up peri-implant soft tissues, increasing the biocompatibility, cell adhesion and antibacterial properties of titanium. In this study, the surfaces of anodized titanium pillars from the Nobel Biocare company were coated by immersion in a suspension of graphene oxide with water; they were subsequently placed in a muffle at 180°C for 2 hours to fix and dry the coating. The graphene oxide film was characterized by scanning electron microscopy, X-ray scattering spectroscopy (EDS), and elemental mapping. Finally, anodized titanium prosthetic abutments with or without graphene oxide coating were evaluated by adhesion tests. Scanning electron microscopy allowed us to observe the layers of graphene oxide deposited on the surface of the pillar, mapping verified the presence of carbon on the entire surface and EDS the presence of carbon and titanium. Biological assays demonstrated a significant increase in cell adhesion on graphene oxide-coated titanium pillars compared to their uncoated counterparts. These results allow us to conclude that the surfaces of the anodized titanium pillars were successfully coated with graphene oxide and that this coating had a favorable influence on cell adhesion.
Downloads
Article Details
Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología por Universidad Nacional Autónoma de México se distribuye bajo una Licencia Creative Commons Atribución-NoComercial 4.0 Internacional.
Basada en una obra en http://www.mundonano.unam.mx.
References
Akshaya, S., Praveen Kumar Rowlo, Amey Dukle y A. Joseph Nathanael. (2022). Antibacterial coatings for titanium implants: recent trends and future perspectives. Antibiotics, 11(12): 1719. https://doi.org/10.3390/antibiotics11121719. DOI: https://doi.org/10.3390/antibiotics11121719
Andrukhov, Oleh, Christian Behm, Alice Blufstein, Christian Wehner, Johannes Gahn, Benjamin Pippenger, Raphael Wagner y Xiaohui Rausch-Fan. (2020). Effect of implant surface material and roughness to the susceptibility of primary gingival fibroblasts to inflammatory stimuli. Dental Materials, 36(6): e194-205. https://doi.org/10.1016/j.dental.2020.04.003. DOI: https://doi.org/10.1016/j.dental.2020.04.003
Bonilla-Represa, Victoria, Camilo Abalos-Labruzzi, Manuela Herrera-Martínez y M. Olga Guerrero-Pérez. (2020). Nanomaterials in dentistry: state of the art and future challenges. Nanomaterials, 10(9): 1770. https://doi.org/10.3390/nano10091770. DOI: https://doi.org/10.3390/nano10091770
Carlo, Roberta Di, Antonello Di Crescenzo, Serena Pilato, Alessia Ventrella, Adriano Piattelli, Lucia Recinella, Annalisa Chiavaroli et al. (2020). Osteoblastic differentiation on graphene oxide-functionalized titanium surfaces: an in vitro study. Nanomaterials, 10(4): 654. https://doi.org/10.3390/nano10040654. DOI: https://doi.org/10.3390/nano10040654
Ceratti, Davide. R., Benjamin Louis, Xavier Paquez, Marco Faustini y David Grosso. (2015). A new dip coating method to obtain large‐surface coatings with a minimum of solution. Advanced Materials, 27(34): 4958-62. https://doi.org/10.1002/adma.201502518. DOI: https://doi.org/10.1002/adma.201502518
Deng, Zhaoming, Jun Liang, Na Fang y Xiangwei Li. (2022). Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. International Journal of Biological Macromolecules, 208(mayo): 833-43. https://doi.org/10.1016/j.ijbiomac.2022.03.195. DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.195
Derks, Jan y Cristiano Tomasi. (2015). Peri‐implant health and disease. A systematic review of current epidemiology. Journal of Clinical Periodontology, 42(S16). https://doi.org/10.1111/jcpe.12334. DOI: https://doi.org/10.1111/jcpe.12334
Guo, Tianqi, Karan Gulati, Himanshu Arora, Pingping Han, Benjamin Fournier y Sašo Ivanovski. (2021). Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomaterialia, 124(abril): 33-49. https://doi.org/10.1016/j.actbio.2021.01.001. DOI: https://doi.org/10.1016/j.actbio.2021.01.001
Hall, Jan, Jessica Neilands, Julia R. Davies, Annika Ekestubbe y Bertil Friberg. (2019). A randomized, controlled, clinical study on a new titanium oxide abutment surface for improved healing and soft tissue health. Clinical Implant Dentistry and Related Research, 21(S1): 55-68. https://doi.org/10.1111/cid.12749. DOI: https://doi.org/10.1111/cid.12749
Huang, Minjie, Minhui Xiao, Jie Dong, Yee Huang, Haiyan Sun y Deqian Wang. (2022). Synergistic anti-inflammatory effects of graphene oxide quantum dots and trans-10-hydroxy-2-decenoic acid on LPS-stimulated RAW 264.7 macrophage cells. Biomaterials Advances, 136(mayo): 212774. https://doi.org/10.1016/j.bioadv.2022.212774. DOI: https://doi.org/10.1016/j.bioadv.2022.212774
Inchingolo, Angelo Michele, Giuseppina Malcangi, Alessio Danilo Inchingolo, Antonio Mancini, Giulia Palmieri, Chiara Di Pede, Fabio Piras, Francesco Inchingolo, Gianna Dipalma y Assunta Patano. (2023). Potential of graphene-functionalized titanium surfaces for dental implantology: systematic review. Coatings, 13(4): 725. https://doi.org/10.3390/coatings13040725. DOI: https://doi.org/10.3390/coatings13040725
Ivanovski, Saso y Ryan Lee. (2018). Comparison of peri‐implant and periodontal marginal soft tissues in health and disease. Periodontology 2000, 76(1): 116-30. https://doi.org/10.1111/prd.12150. DOI: https://doi.org/10.1111/prd.12150
Jeon, Hong Goo, Yoon Ho Huh, Soo Hong Yun, Ki Woong Kim, Sun Sook Lee, Jongsun Lim, Ki-Seok An y Byoungchoo Park. (2014). Improved homogeneity and surface coverage of graphene oxide layers fabricated by horizontal-dip-coating for solution-processable organic semiconducting devices. Journal of Materials Chemistry C, 2(14): 2622. https://doi.org/10.1039/c3tc31933d. DOI: https://doi.org/10.1039/c3tc31933d
Kawamoto, Kohei, Hirofumi Miyaji, Erika Nishida, Saori Miyata, Akihito Kato, Akito Tateyama, Tomokazu Furihata, Kanako Shitomi, Toshihiko Iwanaga y Tsutomu Sugaya. (2018). Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog. International Journal of Nanomedicine, 13(abril): 2365-76. https://doi.org/10.2147/IJN.S163206. DOI: https://doi.org/10.2147/IJN.S163206
Kwak, Jeong Min, Jungho Kim, Chung‐Sung Lee, Il‐Soo Park, Min Lee, Dal‐Hee Min y In‐Sung Luke Yeo. (2022). Graphene oxide as a biocompatible and osteoinductive agent to promote implant osseointegration in a rabbit tibia model. Advanced Materials Interfaces, 9(28). https://doi.org/10.1002/admi.202201116. DOI: https://doi.org/10.1002/admi.202201116
Lee, Wong Cheng, Candy Haley Y. X. Lim, Hui Shi, Lena A. L. Tang, Yu Wang, Chwee Teck Lim y Kian Ping Loh. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 5(9): 7334-41. https://doi.org/10.1021/nn202190c. DOI: https://doi.org/10.1021/nn202190c
Li, Xiaojing, Xin Liang, Yanhui Wang, Dashan Wang, Minhua Teng, Hao Xu, Baodong Zhao y Lei Han. (2022). Graphene-based nanomaterials for dental applications: principles, current advances and future outlook. Frontiers in Bioengineering and Biotechnology, 10(marzo). https://doi.org/10.3389/fbioe.2022.804201. DOI: https://doi.org/10.3389/fbioe.2022.804201
Liu, Jingqi, Ning Hu, Xuyang Liu, Yaolu Liu, Xuewei Lv, Liangxiao Wei y Shoutao Zheng. (2019). Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering. Nanoscale Research Letters, 14(1): 114. https://doi.org/10.1186/s11671-019-2951-9. DOI: https://doi.org/10.1186/s11671-019-2951-9
Liu, Yunsong, Tong Chen, Feng Du, Ming Gu, Ping Zhang, Xiao Zhang, Jianzhang Liu, Longwei Lv, Chunyang Xiong y Yongsheng Zhou. (2016). Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem cells in vitro and in vivo. Journal of Biomedical Nanotechnology, 12(6): 1270-84. https://doi.org/10.1166/jbn.2016.2254. DOI: https://doi.org/10.1166/jbn.2016.2254
Murugesan, N., S. Suresh, M. Kandasamy, S. Murugesan, N. Pugazhenthiran, V. Prasanna Venkatesh, B. K. Balachandar, S. Karthick Kumar y M. N. M. Ansari. (2023). Facile dip-coating assisted preparation of reduced graphene oxide-copper oxide nanocomposite thin films on aluminum substrate for solar selective absorber. Physica B: Condensed Matter, 669(noviembre): 415288. https://doi.org/10.1016/j.physb.2023.415288. DOI: https://doi.org/10.1016/j.physb.2023.415288
Mussano, Federico, Tullio Genova, Marco Laurenti, Elisa Zicola, Luca Munaron, Paola Rivolo, Pietro Mandracci y Stefano Carossa. (2018). Early response of fibroblasts and epithelial cells to pink-shaded anodized dental implant abutments: an in vitro study. The International Journal of Oral & Maxillofacial Implants, 33(3): 571-79. https://doi.org/10.11607/jomi.6479. DOI: https://doi.org/10.11607/jomi.6479
Park, Jae-bum, Dan-bi Park, Ji-hoon Lee, Su-jeong Yang, Ji-eun Lee, Jin-Kyung Park, Jeung-Soo Huh y Jeong-Ok Lim. (2022). Application of graphene oxide as a biomaterial for the development of large-area cell culture vessels. Applied Sciences, 12(22): 11599. https://doi.org/10.3390/app122211599. DOI: https://doi.org/10.3390/app122211599
Song, Fei, Fuyou Ke, Huiying Zhang y Huaping Wang. (2019). Preparation of graphene-coated conductive fibers by layer-by-layer assembly of negative and positive charged graphene oxide. Materials Today: Proceedings, 16: 1542-47. https://doi.org/10.1016/j.matpr.2019.05.338. DOI: https://doi.org/10.1016/j.matpr.2019.05.338
Srimaneepong, Viritpon, Hans Erling Skallevold, Zohaib Khurshid, Muhammad Sohail Zafar, Dinesh Rokaya y Janak Sapkota. (2022). Graphene for antimicrobial and coating application. International Journal of Molecular Sciences, 23(1): 499. https://doi.org/10.3390/ijms23010499. DOI: https://doi.org/10.3390/ijms23010499
Tang, Xiaoning y Xiong Yan. (2017). Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology, 81(2): 378-404. https://doi.org/10.1007/s10971-016-4197-7. DOI: https://doi.org/10.1007/s10971-016-4197-7
Teng, F., H. Chen, Y. Xu, Y. Liu y G. Ou. (2018). Polydopamine deposition with anodic oxidation for better connective tissue attachment to transmucosal implants. Journal of Periodontal Research, 53(2): 222-31. https://doi.org/10.1111/jre.12509. DOI: https://doi.org/10.1111/jre.12509
Wan, Zhaomei, Jiuxiao Li, Dongye Yang y Shuluo Hou. (2022). Microstructural and mechanical properties characterization of graphene oxide-reinforced ti-matrix composites. Coatings, 12(2): 120. https://doi.org/10.3390/coatings12020120. DOI: https://doi.org/10.3390/coatings12020120
Wang, Xing, Weilong Diwu, Jianbin Guo, Ming Yan, Wenrui Ma, Min Yang, Long Bi y Yisheng Han. (2023). Enhancement of antibacterial properties and biocompatibility of Ti6Al4V by graphene oxide/strontium nanocomposite electrodepositing. Biochemical and Biophysical Research Communications, 665(julio): 35-44. https://doi.org/10.1016/j.bbrc.2023.05.002. DOI: https://doi.org/10.1016/j.bbrc.2023.05.002
Williams, A. G., E. Moore, A. Thomas y J. A. Johnson. (2023). Graphene-based materials in dental applications: antibacterial, biocompatible y bone regenerative properties. International Journal of Biomaterials, 2023(febrero): 1-18. Alexander Seifalian (ed.). https://doi.org/10.1155/2023/8803283. DOI: https://doi.org/10.1155/2023/8803283
Zheng, Zheng, Xiaogang Ao, Peng Xie, Fan Jiang y Wenchuan Chen. (2021). The biological width around implant. Journal of Prosthodontic Research, 65(1): 11-18. https://doi.org/10.2186/jpr.JPOR_2019_356. DOI: https://doi.org/10.2186/jpr.JPOR_2019_356