3D printed scaffolds with heterogeneous porosity as a bone regeneration strategy in vivo

Main Article Content

Lucía Pérez Sánchez
https://orcid.org/0009-0009-1582-9210
Mariana Elizabeth Silva Torres
https://orcid.org/0009-0004-5990-831X
Silvia Maldonado Frías
https://orcid.org/0000-0002-8087-8678
Rodrigo Correa-Prado
https://orcid.org/0009-0005-0909-8272
Eduardo Villarreal-Ramírez
Francisco Marichi Rodríguez
https://orcid.org/0009-0007-2541-4399
Janeth Serrano-Bello
https://orcid.org/0000-0002-1506-9575

Abstract

3D-printed scaffolds with heterogeneous pores emerge as a strategy for tissue regeneration. In this study, bone regeneration was evaluated in critical defects of Wistar rats due to osteoconduction of 3D-printed polylactic acid (PLA) scaffolds with different pore sizes: 250-300 µm in the periphery, followed by 350-400 µm and 400-740 µm in the centre. The small ones promote cell adhesion, while the large ones promote angiogenesis. The scaffolds were 3D printed with PLA, a thermoplastic, biocompatible, and bioresorbable material that has been rigorously approved by the United States Food and Drug Administration (FDA). We evaluated the pore size and porosity in vivo in defects of 9 mm in diameter in rat calvaria, calculating the mineralized tissue by the radiodensity of the Hounsfield units (HU) in microtomographic images at 8, 30, 60 and 90 days. The results showed a pore range of 200-800µm (as the design), and the porosity was 98%, which favored the flow of nutrients, oxygen, and waste elimination. Radiodense tissue was observed in vivo on day 30, evidently on day 90, agreeing with the HU 93.66 and 118.31 respectively. The results of this study demonstrate that 3D scaffolds with heterogeneous pores have a significant osteoconductive capacity in bone regeneration. This finding opens new possibilities and alternatives in the field of tissue bioengineering, potentially revolutionizing the way we approach tissue regeneration. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Pérez Sánchez, L., Silva Torres, M. E., Maldonado Frías, S., Correa-Prado, R., Villarreal-Ramírez, E., Marichi Rodríguez, F., & Serrano-Bello, J. (2025). 3D printed scaffolds with heterogeneous porosity as a bone regeneration strategy in vivo. Mundo Nano. Interdisciplinary Journal on Nanosciences and Nanotechnology, 18(34), e69828. https://doi.org/10.22201/ceiich.24485691e.2025.34.69828 (Original work published August 15, 2024)
Section
Research articles

References

Abbasi, Naghmeh, Stephen Hamlet, Robert M. Love y Nam Trung Nguyen. (2020). Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1): 1-9. https://doi.org/10.1016/j.jsamd.2020.01.007. DOI: https://doi.org/10.1016/j.jsamd.2020.01.007

Bauermeister, Adam J., Alexander Zuriarrain y Martin I. Newman. (2016). Three-dimensional printing in plastic and reconstructive surgery. Annals of Plastic Surgery, 77(5): 569-76. https://doi.org/10.1097/SAP.0000000000000671. DOI: https://doi.org/10.1097/SAP.0000000000000671

Bružauskaitė, Ieva, Daiva Bironaitė, Edvardas Bagdonas y Eiva Bernotienė. (2016). Scaffolds and cells for tissue regeneration: different scaffold pore sizes – different cell effects. Cytotechnology, 68 (3): 355-69. https://doi.org/10.1007/s10616-015-9895-4. DOI: https://doi.org/10.1007/s10616-015-9895-4

Cai, Zhongyu, Yong Wan, Matthew L. Becker, Yun-Ze Long y David Dean. (2019). Poly(propylene fumarate)-based materials: synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials, 208: 45-71, julio. https://doi.org/10.1016/j.biomaterials.2019.03.038. DOI: https://doi.org/10.1016/j.biomaterials.2019.03.038

Chabrand, P. (2018). Biomecánica del tejido óseo. EMC – Aparato Locomotor, 51(3): 1-8. https://doi.org/10.1016/S1286-935X(18)92752-8. DOI: https://doi.org/10.1016/S1286-935X(18)92752-8

Chung, Sangwon y Martin W. King. (2011). Design concepts and strategies for tissue engineering scaffolds. Biotechnology and Applied Biochemistry, 58(6): 423-38. https://doi.org/10.1002/bab.60. DOI: https://doi.org/10.1002/bab.60

Diao, Jingjing, Jun OuYang, Ting Deng, Xiao Liu, Yanting Feng, Naru Zhao, Chuanbin Mao y Yingjun Wang. (2018). 3D‐plotted beta‐tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical‐sized calvarial defect rat model. Advanced Healthcare Materials, 7(17). https://doi.org/10.1002/adhm.201800441. DOI: https://doi.org/10.1002/adhm.201800441

Do, Anh‐Vu, Behnoush Khorsand, Sean M. Geary y Aliasger K. Salem. (2015). 3D printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials, 4(12): 1742-62. https://doi.org/10.1002/adhm.201500168. DOI: https://doi.org/10.1002/adhm.201500168

Gaihre, Bipin, Maria D. Astudillo Potes, Xifeng Liu, Maryam Tilton, Emily Camilleri, Asghar Rezaei, Vitalii Serdiuk et al. (2024). Extrusion 3D‐printing and characterization of poly(caprolactone fumarate) for bone regeneration applications. Journal of Biomedical Materials Research Part A, 112(5): 672-84. https://doi.org/10.1002/jbm.a.37646. DOI: https://doi.org/10.1002/jbm.a.37646

Gillman, Cassidy E. y Ambalangodage C. Jayasuriya. (2021). FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Materials Science and Engineering: C, 130: 112466, noviembre. https://doi.org/10.1016/j.msec.2021.112466. DOI: https://doi.org/10.1016/j.msec.2021.112466

Hidalgo, Héctor Malagón, Gabriela Wong Romo y Roberto Takeo Rivera Estolano. (2009). Stereolithography. Journal of Craniofacial Surgery, 20(5): 1473-77. https://doi.org/10.1097/SCS.0b013e3181b09a70. DOI: https://doi.org/10.1097/SCS.0b013e3181b09a70

Huang, Yu-Hui, Rosemary Seelaus, Linping Zhao, Pravin K Patel y Mimis Cohen. (2016). Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report. International Medical Case Reports Journal, 9:341-45, noviembre. https://doi.org/10.2147/IMCRJ.S118139. DOI: https://doi.org/10.2147/IMCRJ.S118139

Kantaros, Antreas. (2022). 3D printing in regenerative medicine: technologies and resources utilized. International Journal of Molecular Sciences, 23(23): 14621. https://doi.org/10.3390/ijms232314621. DOI: https://doi.org/10.3390/ijms232314621

Liu, Mengying y Yonggang Lv. (2018). Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model. Nanomaterials, 8(12): 999. https://doi.org/10.3390/nano8120999. DOI: https://doi.org/10.3390/nano8120999

Loh, Qiu Li y Cleo Choong. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6): 485-502. https://doi.org/10.1089/ten.teb.2012.0437. DOI: https://doi.org/10.1089/ten.teb.2012.0437

Mejía Suaza, Mónica Liliana, María Elena Moncada y Claudia Patricia Ossa-Orozco. (2020). Characterization of electrospun silk fibroin scaffolds for bone tissue engineering: a review. TecnoLógicas, 23(49): 33-51. https://doi.org/10.22430/22565337.1573. DOI: https://doi.org/10.22430/22565337.1573

Pérez-Sánchez, Lucía, Misael Aaron Ortiz de la O., Patricia González-Alva, Luis Alberto Medina, David Masuoka-Ito, Marco Antonio Álvarez-Pérez y Janeth Serrano-Bello. (2021). In vivo study on bone response to 3D-printed constructs designed from microtomographic images. Journal of Materials Engineering and Performance, 30(7): 5005-12. https://doi.org/10.1007/s11665-021-05585-8. DOI: https://doi.org/10.1007/s11665-021-05585-8

Prasopthum, Aruna, Mick Cooper, Kevin M. Shakesheff y Jing Yang. (2019). Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells. ACS Applied Materials & Interfaces, 11(21): 18896-906. https://doi.org/10.1021/acsami.9b01472. DOI: https://doi.org/10.1021/acsami.9b01472

Qin, Wen, Chenkai Li, Chun Liu, Siyu Wu, Jun Liu, Jiayi Ma, Wenyang Chen, Hongbin Zhao y Xiubo Zhao. (2022). 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. Journal of Biomaterials Applications, 3 (10): 1838-51. https://doi.org/10.1177/08853282211067646. DOI: https://doi.org/10.1177/08853282211067646

Saini, P., M. Arora y M. N. V. Ravi Kumar. (2016). “Oly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews, 107: 47-59, diciembre. https://doi.org/10.1016/j.addr.2016.06.014. DOI: https://doi.org/10.1016/j.addr.2016.06.014

Shanbhag, Siddharth, Salwa Suliman, Samih Mohamed-Ahmed, Carina Kampleitner, Mohamed Nageeb Hassan, Patrick Heimel, Toni Dobsak, Stefan Tangl, Anne Isine Bolstad y Kamal Mustafa. (2021). Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs. Stem Cell Research & Therapy, 12(1): 575. https://doi.org/10.1186/s13287-021-02642-w. DOI: https://doi.org/10.1186/s13287-021-02642-w

Su, Xin, Ting Wang y Shu Guo. (2021). Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regenerative Therapy, 16: 63-72, marzo. https://doi.org/10.1016/j.reth.2021.01.007. DOI: https://doi.org/10.1016/j.reth.2021.01.007

Subramaniam, S. R., M. Samykano, S. K. Selvamani, W. K. Ngui, K. Kadirgama, K. Sudhakar y M. S. Idris. (2019). 3D printing: overview of PLA progress. 020015. https://doi.org/10.1063/1.5085958. DOI: https://doi.org/10.1063/1.5085958

Sultan, Sahar y Aji P. Mathew. (2018). 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale, 10(9): 4421-31. https://doi.org/10.1039/C7NR08966J. DOI: https://doi.org/10.1039/C7NR08966J

Taib, Nur-Azzah Afifah Binti, Md Rezaur Rahman, Durul Huda, Kuok King Kuok, Sinin Hamdan, Muhammad Khusairy Bin Bakri, Muhammad Rafiq Mirza Bin Julaihi y Afrasyab Khan. (2023). A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin, 80(2): 1179-1213. https://doi.org/10.1007/s00289-022-04160-y. DOI: https://doi.org/10.1007/s00289-022-04160-y

Van, Bael, S, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.-P. Kruth y J. Schrooten. (2012). The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomaterialia, 8(7): 2824.34. https://doi.org/10.1016/j.actbio.2012.04.001. DOI: https://doi.org/10.1016/j.actbio.2012.04.001

Wu, Jiang, Jian Zhou, Wen Zhao y Bo Gao. (2013). Evaluation of the bond strength of a low-fusing porcelain to cast Ti–24Nb–4Zr–7.9Sn aAlloy. Materials Science and Engineering: C, 33(1): 140-44. https://doi.org/10.1016/j.msec.2012.08.020. DOI: https://doi.org/10.1016/j.msec.2012.08.020

Zhang, Lei, Guojing Yang, Blake N. Johnson y Xiaofeng Jia. (2019). Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomaterialia, 84: 16-33, enero. https://doi.org/10.1016/j.actbio.2018.11.039. DOI: https://doi.org/10.1016/j.actbio.2018.11.039