Abstract
Coal is defined as a sedimentary rock of organic origin formed by the deposition of plant debris and clayey sediments that have undergone a diagenetic process. The main factors that control the formation of coal during diagenesis are: 1) accumulation of organic matter and sediments, 2) subsidence, 3) water column, 4) increase in pressure and temperature through geologic time.
Coal is constituted by organic matter derived from higher terrestrial plants (type III kerogen) that during the diagenetic process gives rise to condensed polyaromatic compounds and oxygenated functional groups, with low proportions of aliphatic chains, in addition to a low H/C atomic ratio (<1), resulting in a moderate oil producing potential and abundant amounts of gas at greater depths, also exhibiting an O/C atomic ratio (0.05 - 0.40) that is comparatively higher than other kerogens (e.g., I and II). Type III kerogen, represented by humic organic material of continental and coastal origin, is composed primarily of higher plants and all types of wood, and contains high concentrations of celluloses, lignin, carboxyl group acids, heteroatomic ketones, and a smaller proportion of aliphatic and alicyclic compounds. The depositional environment of this type of material is related to lagoons, deltas, and mangroves. In the early stages of maturity of type III kerogen, a greater amount of gas than oil is commonly developed, however, the latter is predominantly paraffinic, naphthenic, aromatic, and even contains waxes. This kerogen can also form strong carbon layers. Hence the importance of discussing the significant relationship between coal and the hydrocarbons formed from it.
The information presented in the manuscript is expected to help teachers, students and future professionals understand the fundamentals, composition and processes that occur for the formation of hydrocarbons in coal in order to apply the necessary knowledge in the development of geological and geochemical characterization and interpretation.
References
Allen, P.A., y Allen, J.R., (2005). Basin Analysis: Principles and Applications, 2nd Edition. Wiley-Blackwell. 560 pp.
Ayers Jr., W. B., (2002). "Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins," American Association Petroleum Geologists Bulletin 86, 1853-1890.
Barker, C.E., S. A., (2001). Coal Bed Methane: From prospect to production. Denver, Colorado: Short Course presented
hydrocarbon generation and migration in the Horn Graben in the Danish North Sea: a 2D basin modelling study. International Journal of Earth Science 97, 1087–1100.
Beha, A., Thomsen, R.O., y Littke, R., (2008b). A rapid method of quantifying the resolution limits of heat-flow estimates in basin models. Journal of Petroleum Geology 31 (2), 167–178.
Bodden, R.W. III, y Ehrlich, R., (1998). Permeability of coals and characteristics of desorption tests: Implications for coalbed methane production: International Journal of Coal Geology 35, 333-347.
Corona-Esquivel, R., Tritlla, J., Benavides-Muñoz, M. E., Piedad- Sánchez, N., y Ferrusquía-Villafranca, I. (2006). Geología, estructura y composición de los principales yacimientos de carbón mineral en México. Boletín de la Sociedad Geológica Mexicana, 58(1), 141-160.
Crosdale, P.J., Basil, Beamish, B., y Valix, M., (1998). Coalbed methane sorption related to coal composition. International Journal of Coal Geology 35, 147-158.
Diessel, C.F.K., (1992). Coal-bearing Depositional Systems. Springer- Verlag, Berlin. 721 pp.
Durand, B., y Monin, J.C., (1980). Elemental analysis of kerogens (C,H,O,N,S, Fe). In B Durand, Ed., Kerogen. Insoluble organic matter from sedimentary rocks, p. 113-142. Édtions Technip, Paris.
ECE-UN (1998): lnternational Classification of in-Seam Coals, Economic Commission for Europe Committee on Sustainable Energy, United Nations, New York and Geneva, 1998, ENERGY/1998/19, 41 pp.
Flores, R.M., (1998). Coalbed methane: From hazard to resource: International Journal of Coal Geology, 35, 3-26.
Hantschel, T., y Kaueroff, A.I., (2009). Fundamentals of basin and petroleum systems modeling. Springer. 492pp.
Hood, A., y Castaño, J. R., (1974). Organic metamorphism: Its relationship to petroleum generation and application to studies of authigenic minerals. Coordinating Comm. Offshore Prospecting Techn. Bull. 8, 85-118.
Hood, A., Gut jahr, C. C. M., y Heacock, R. L., (1975). Organic metamorphism and the generation of petroleum. Am. Assoc. Pet. Geol. Bull. 59, 986-996.
ICCP. (1993). International Committee for Coal Petrology. International Handbook of Coal Petrography, 3rd Supplement to the 2nd Ed. University of Newcastle upon Tyne, England.
Kaiser, W. R., Hamilton, D. S., Scott, A. R., Tyler, R., y Finley, R. J., (1994). "Geological and hydrological controls on the producibility of coalbed methane," J. Geol. Soc. London, 151, 417-420.
Laxminarayana, C., y Crosdale, P.J., (1999), Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals: International Journal of Coal Geology 40, 309-325.
Lemos de Sousa, M.J., Rodrigues C.F., y Dinis M.A.P., Eds, (2012). O Carvão na Actualidade, Vol 1- Petrology, methods of analyses, classification and resources/reserves assessment, coal in world energy scenario, coal in Portugal, 467 p.Universidade Fernando Pessoa (Portugal). ISBN 978-989-643-103-7.
Mukhopadhyay, K., H. P., (1993). Composition of coal, in Law, B.E., Rice, D.D., (eds.), Hydrocarbons from coal. AAPG Studies in Geology, 38, 79-113.
Pagel, M., Barbarand, J., Beaufort, D., Gautheron, C., and Pironon, J., (2014). Bassins sédimentaires: Les marqueurs de leur histoire thermique, Géospheres Collection; edp sciences: www. edpsciences.org, 227 pp.
Piedad-Sánchez, N., (2005a). Prospection des hydrocarbures par une approche intégrée de pétrographie, géochimie et modélisation de la transformation de la metiére organique : Analyse et reconstruction de la histoire thermique des Bassins Carbonifére Central des Asturies (Espagñe) et Sabinas-Piedras Negras (Coahuila, Mexique). Tesis de Doctorado. UMR-CNRS G2R/7566- Géologie et Gestion des Ressources Minérales et Energétiques. Faculte des Sciences- Université Henri Pioncaré - Nancy I. 350 pp
Piedad-Sánchez, N., (2005b). Estudio de la Industria del Carbón en la Región Carbonífera del Estado de Coahuila y del cluster del carbón a nivel mundial: Corporación Mexicana de Investigación en Materiales, S.A., pp. 16-29.
Piedad-Sánchez, N., Martínez, L., Suárez-Ruiz, I., Alsaab, D., Izart, A., y Milenkova, K., (2005). Estudio preliminar de la estructura del carbón de la Formación Olmos en la Región Carbonífera, Coahuila, México: Convención Internacional de Minería XXVI. Veracruz, Ver. Acta de Sesiones, p. 89.
Piedad-Sánchez, N., Suárez-Ruiz, I., Martinez, L., Izart, A., Elie, M., y Keravis, D., (2005) Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain). International Journal of Coal Geology 57, 211-242.
Rightmire, C. T., Eddy, G. E., y Kirr, J. N. (eds.), (1984). "Coalbed methane resources of the United States," Am. Assoc. Petrol. Geol. Studies in Ceology 21, 378 pp.
Rodrigues, C. F. A. (2002). The application of isotherm studies to evaluate the coalbed methane potential of the Waterberg Basin, South Africa. 287 pp.
Querol-Suñé, F. 2005. Desperdicio del gas grisú en México. Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México, A.C., Convención Internacional de Minería XXVI. Veracruz, Ver. Acta de Sesiones, p. 461-465
Santamaría-Orozco, D. M., Amezcua Allieri, M. A., y Carrillo Hernández, T. D. J. (2009). Generación de petróleo mediante experimentos de pirólisis: revisión sobre el conocimiento actual. Boletín de la Sociedad Geológica Mexicana, 61(3), 353-366.
Senftle, J.T., Landis, Ch.R., y MacLaughlin, R.L., (1993). Organic petrographic approach to kerogen characterization. In: Engel,M.H., Macko, S.A. (Eds.), Organic Geochemistry. : Principles and Applications. Plenum Publishing Corporation, New York, pp. 355–374. Chapter 15.
Stach, E., Mackowsky, M-Th., Teichmuller, M., Taylor, G.H., Chandra, D., y Teichmuller, R. (Eds.), (1982). Coal Petrology. Gebruder Borntraeger, Berlin - Stuttgart, p. 535 pp.
Suárez-Ruiz, I., y Crelling, J.C. (Eds.), (2008). Applied Coal Petrology. The Role of Petrology in Coal Utilization. Elsevier, Amsterdam. 398 pp.
Suárez-Ruíz, I., Flores, D., Filho, J. G. M., y& Hackley, P. C. (2012). Review and update of the applications of organic petrology: Part 1, geological applications. International Journal Of Coal Geology, 99, 54-112. https://doi.org/10.1016/j.coal.2012.02.004
Taylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R., y Robert, P., (1998). Organic Petrology. Gebrüder Borntraeger, Berlin. 704 pp.
Teichmüller, M., y Teichmüller, R., (1982). Fundamentals of coal petrology. In: Stach, E., Mackowsky, M-Th., Teichmuller, M., Taylor, G.H., Chandra, D., y Teichmuller, R. (Eds.), Stach's Textbook of Coal Petrology. Gebruder Borntraeger, Berlin-Stuttgart, pp. 5–86.
Teichmüller, M. (1989). The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12(1-4), 1-87.
Tissot, B.P. y Welte, D.H., (1984). Petroleum Formation and Occurrence, 2 edition. – 669 p.; New York (Springer). https://doi.org/10.1007/978-3-642-87813-8.
Vandenbroucke, M., y Largeau, C., (2007). Kerogen origin, evolution and structure. Organic Geochemistry 38, 719–833.
Van Krevelen, D.W., (1993). Coal: Typology – Chemistry –Physics – Constitution, 3rd ed. Elsevier, The Netherlands. 979 pp.
Wilkins, R. W. T., y George, S. C., (2002). "Coal as a source rack for oil: a review," International Journal of Coal Geology 50, 317-36l.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Universidad Nacional Autónoma de México