ISSN-e: 2992-8087
Retención de CO2 por mineralización en rocas. Una propuesta de preparación y análisis de muestras en el laboratorio
PDF (Español (España))

Keywords

mineralization of CO2
geological storage
geochemistry
igneous rocks
global warming

How to Cite

Almazán-Mendoza, J. H., Gómora-Figueroa, A. P., Mori, L., & González-Torres, E. A. (2023). Retención de CO2 por mineralización en rocas. Una propuesta de preparación y análisis de muestras en el laboratorio . Enseñanza Y Comunicación De Las Geociencias, 2(1), 43–51. Retrieved from http://132.248.204.99/ojs_geo33015/index.php/comunicaciongeociencias/article/view/42

Abstract

The present work sets a lab proposal for evaluating and selecting among different igneous rocks samples, using geochemical and petrographic analysis, the best candidates for aqueous CO2 exposure. This work aims to guide students (B.S. and Graduates) interested in practical techniques employed for evaluating carbon dioxide storage through geochemical analysis in the lab. The designed protocols were validated by B.S. and graduate students in the Petroleum Engineering Department at UNAM, to identify of some critical parameters for CO2 mineralization in igneous rocks and olivine, which is a common mineral present in mafic igneous rocks, and it has been reported as one of the best prospects for carbon dioxide mineralization.

The rock samples were exposed to CO2 dissolved in water at a pressure range of 5860 - 6550 kPa and a temperature range of 20 to 25 °C. We used infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, and inductively coupled plasma-mass spectrometry to confirm the CO2 mineralization. After exposing the olivine to CO2 for 21 to 60 days, we observed the formation of bicarbonates and carbonates, respectively. For the igneous rocks, we identified bicarbonates after 30 days of exposure and the liberation of Ca2+, Mg2+, and Fe3+ ions in water, which are critical for carbonate formation.

Although the CO2 mineralization in these rocks has been reported previously it is necessary to continue investigating this topic to enrich the database with the ideal samples and broaden the knowledge about the igneous rocks’ capacity for CO2 storage. This type of experience is relevant for graduate and B.S. students majoring in Earth Sciences and areas alike. Also, it helps to fulfill the education in topics related to global warming, CO2 emissions mitigation, and energy transition.

PDF (Español (España))

References

Akono, A.T., Druhan, J. L.; Davila, G.; Tsotsis, T.; Jessen, K.; Werth, C. J., (2019). A review of geochemical-mechanical impacts in geological carbon storage reservoirs. Greenhouse Gases-Science and Technology, 9 (3), 474-504. DOI: 10.1002/ghg.1870

Almazán-Mendoza, J. (2022). Identificación de parámetros físicos para la mineralización de CO2 en olivino y rocas ígneas. [Tesis de licenciatura, UNAM].

Cantú-Apodaca, E. (2018). Análisis de la factibilidad para la eliminación de dióxido de carbono mediante la formación de carbonatos a través de basaltos. [Tesis de licenciatura, UNAM].

Carbfix. (2023). How it works. Carbfix.Com. Enerdata. (2023). Producción energética total. Datos.enerdata. https://datos.enerdata.net/energia-total/produccion-energetica-mundial.html

Gadikota, G., Matter, J., Kelemen, P., Brady, P. v., Park, A. H. A. (2020). Elucidating the differences in the carbon mineralization behaviors of calcium and magnesium bearing alumino-silicates and magnesium silicates for CO2 storage. Fuel, 277, 0016-2361. https://doi.org/10.1016/j.fuel.2020.117900

Global CCS Institute (2020). Remove: Carbon Capture and Storage. globalccsinstitue.com.

Gómez-Tuena, A., Mori, L. y Straub, S. M. (2018). Geochemical and petrological insights into de tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews, 183, 153–181.

IEA. (2022). CO2 Capture and Utilisation. iea.org.

Johnson, J. (2012). Thermal infrared spectra of experimentally shocked andesine anorthosite. Icarus, 221, 359-364. https://doi.org/10.1016/j.icarus.2012.08.012

Kwon S., Fan M., DaCosta H. F. M., y Russell A. G. (2011). Factors affecting the direct mineralization of CO2 with olivine. Journal of Environmental Sciences, 23(8), 1233–1239. https://doi.org/10.1016/S1001-0742(10)60555-4

Macías-Navarro L. (2020) Revista México Actúa. Número 1, 4 – 6.

McGrail, B. P., Schaef, H. T., Spane, F. A., Horner, J. A., Owen, A. T., Cliff, J. B., Qafoku, O., Thompson, C. J., y Sullivan, E. C. (2017). Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions. Energy Procedia, 114, 5783–5790. https://doi.org/10.1016/j.egypro.2017.03.1716

MeCCS. (s.f.). CCS y sostenibilidad. Meccs.Org.Mx. Consultado el 10 de febrero de 2023.

Naciones Unidas. (2023). COP26: Juntos por el planeta: un.org

Raza, A., Glatz, G., Gholami, R., Mahmoud, M., y Alafnan, S. (2022). Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth-Science Reviews, 229, 0012-8252. https://doi.org/10.1016/j.earscirev.2022.104036

Ritchie H., Roser M., y Rosado P. (2022) - "Energy". Ourwolrdindata.

Secretaría de Energía. (2018). Mapa de Ruta Tecnológica, CCUS.

Shukla, R., Rankith, P., Haque, A., Choi, X,. (2010). A review of studies on CO2 sequestration and caprock integrity. Fuel, 89, 2651-2664. https://doi.org/10.1016/j.fuel.2010.05.012

Snæbjörnsdóttir, S., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., y Oelkers, E. H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth and Environment, 1(2), 90–102. https://doi.org/10.1038/s43017-019-0011-8

Staib, C., Zhang, T., Burrows, J., Gillespie, A., Havercroft, I., Rassool, D., Consoli, C., Liu, H., Erikson, J., Loria, P., Nambo, H., Wu, Y., Judge, C., y Gebremedhin, R. (2021). Global Status of CCS 2021.

White, S. K., Spane, F. A., Schaef, H. T., Miller, Q. R. S., White, M. D., Horner, J. A., y McGrail, B. P. (2020). Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. Environmental Science and Technology, 54 (22), 14609–14616. https://doi.org/10.1021/acs.est.0c05142

Young-Shin J., Giammar D., y C. J. Werth. (2012). Impacts of Geochemical Reactions on Geologic Carbon Sequestration. Environmental Science y Technology 47 (1), 3-8. https://doi.org/10.1021/es3027133

Zanettin B. (1984). Proposed New Chemical Classification of Volcanic Rocks. Journal of International Geoscience, 7 (4), 19-19. https://doi.org/10.18814/epiiugs/1984/v7i4/003

Zhenxue D., L. Xu, T. Xiao, B. McPherson, X. Zhang, L. Zheng, S. Dong, Z. Yang, M. R. Soltanian, C. Yang, W. Ampomah, W. S. Yin, T. Xu, D. Bacon, H. Viswanathan. (2020). Reactive chemical transport simulations of geologic carbon sequestration: Methods and applications. Earth-Science Reviews, 208, 0012-8252. https://doi.org/10.1016/j.earscirev.2020.103265.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Universidad Nacional Autónoma de México