ISSN-e: 2992-8087
Construcción y análisis de diagramas Stiff-Davis para alumnos de Ingeniería Petrolera, experiencia en el aula
PDF (Español (España))

Keywords

Analysis of produced and injected water
compositional water analysis in the oil and gas industry
water geochemistry
Stiff-Davis diagram
Petroleum engineering
python

How to Cite

Gómora-Figueroa, A. P., Villegas González, J., & Almazán Mendoza, J. (2022). Construcción y análisis de diagramas Stiff-Davis para alumnos de Ingeniería Petrolera, experiencia en el aula. Enseñanza Y Comunicación De Las Geociencias, 1(2), 13–19. Retrieved from http://132.248.204.99/ojs_geo33015/index.php/comunicaciongeociencias/article/view/13

Abstract

This work aims to show the importance of the Stiff-Davis diagrams for petroleum engineers. These diagrams are graphic representations built using eight ions determined in the water analysis. The Stiff- Davis diagrams help us know and anticipate potential flow assurance problems and other risks that may be present during hydrocarbon production. However, most petroleum engineering students need to gain experience with these diagrams, although water is a non-desired byproduct during hydrocarbon extraction. In this paper, we report two activities with 25 senior students, which consisted of constructing and interpreting Stiff-Davis diagrams. The students built such diagrams using the resources available (e.g., an Excel spreadsheet or a piece of paper). Once the students developed these activities, they showed more curiosity to learn the analysis application. However, it is necessary to practice the construction and interpretation with more exercises since there are obvious doubts about identifying some of the diagram components, hampering the understanding of these  diagrams.

PDF (Español (España))

References

Aldana, G., Chourio, A., Zambrano, O. (2015) Hydro geochemical data on oil field water statistic validation. Rev. Téc. Ing. Univ. Zulia. 38 (3) 257-265.

Cather, M.E., Lee, R., Gundiler I., Sung A, Davidson N., Reddy A. K., Wei, M. (2003) NM WAIDS: A Produced Water Quality and Infrastructure GIS Database for New Mexico Oil Producers. Technical Report, Contract No. FC26- 02NT15134, U.S. DOE, Washington, DC. https://doi.org/10.2172/823003.

Carrera-Villacrés, D., Hidalgo, A., Guevara-García, P., Vivero, M. T., Delgado-Rodríguez, V. (2016). Hydrogeochemical analysis of volcanic and geothermal fluids in the Andes from Ecuador using hydrochemical plots (Stiff, Piper and Schoeller-Berkaloff diagrams). IOP Conf. Ser.: Earth Environ. Sci. 39, 012062, 1-9. https://doi.org/10.1088/1755-1315/39/1/012062

Dahm, K. (2014) Guidance for the Evaluation of Water Management Strategies to Provide Regional Water Supplies for the Oil and Gas Industry, Final Report OMB No. 0704-0188. Denver, CO: U.S. Department of the Interior, Bureau of Reclamation U.S. EPA, (2018). Detailed Study of the Centralized Waste Treatment Point Source Category for Facilities Managing Oil and Gas Extraction Wastes. U.S. Environmental Protection Agency, Washington, DC, EPA 821-R-18-004.

U.S. EPA, (2020). Summary of Input on Oil and Gas Extraction Wastewater Management Practices Under the Clean Water Act, U.S. Environmental Protection Agency, Washington, DC, EPA 821-S19-001.

Guerra K., Dahm K. y Dunford S, (2011). Science and Technology Program Report 157. Oil and Gas Produced Water Management and Beneficial Use in the Western United States. U.S. Department of the Interior Bureau of Reclamation.

Kenneth E. (2007). AMEC Paragon Inc. Petroleum Engineering Handbook, Vol. III Facilities and Construction Engineering, Chapter 4 Water-Treating Facilities in Oil and Gas Operations, III-123 – III-182.

Martínez Mateo, B. R. (2019). Análisis y Perspectiva de la Implementación de la Reforma Energética en México. Tesis de Licenciatura, Universidad Nacional Autónoma de México.

Morales-Hernández J. (2017). Estudio de la formación y estabilidad de incrustaciones de carbonato de calcio en campos naturalmente fracturados desde condiciones de yacimiento hasta superficie. Tesis de Licenciatura, Universidad Nacional Autónoma de México.

Ritchie, H. 2017. Renewable Energy. Our World in Data

https://ourworldindata.org/renewable-energy

Stiff, H.A. (1951). The Interpretation of Chemical Water Analysis by Means of Patterns. J Pet Technol 3 15–3.

Takeuchi H. y Tanaka H. (2020). Water reuses and recycling in Japan – History, current situation, and future perspectives – Water Cycle, 1 – 12.

van Rossum T. (2020). Water reuses and recycling in Canada – History, current situation, and future perspectives – Water Cycle, 1, 98 – 103. https://doi.org/10.1016/j.watcyc.2020.05.001

Warner Jr., H. R. (2007). SPE Warner Consulting Services. Petroleum Engineering Handbook, Vol. V Reservoir Engineering and Petrophysics, Chapter 11 Waterflooding, V-1037 – V-1102.

Yael, R., y Dunel, L. (2018) Caracterización hidroquímica de la cuenca inferior del río Colorado. INTAEdiciones. Estación Experimental Agropecuaria Hilario Ascasubi. Argentina.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Universidad Nacional Autónoma de México